Bicyclic graphs with maximum sum of the two largest Laplacian eigenvalues
نویسندگان
چکیده
منابع مشابه
Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...
متن کاملOn Sum of Powers of the Laplacian and Signless Laplacian Eigenvalues of Graphs
Let G be a graph of order n with signless Laplacian eigenvalues q1, . . . , qn and Laplacian eigenvalues μ1, . . . , μn. It is proved that for any real number α with 0 < α 6 1 or 2 6 α < 3, the inequality qα 1 + · · · + qα n > μ1 + · · · + μn holds, and for any real number β with 1 < β < 2, the inequality q 1 + · · ·+ q n 6 μβ1 + · · ·+ μ β n holds. In both inequalities, the equality is attaine...
متن کاملOn the Laplacian coefficients of bicyclic graphs
In this paper, we investigate how the Laplacian coefficients changed after some graph transformations. So, I express some results about Laplacian coefficients ordering of graphs, focusing our attention to the bicyclic graphs. Finally, as an application of these results, we discuss the ordering of graphs based on their Laplacian like energy.
متن کاملGraphs with small second largest Laplacian eigenvalue
Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2016
ISSN: 1029-242X
DOI: 10.1186/s13660-016-1235-5